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Abstract. A general method is given to derive the current-potential relations in

anisotropic plasmas. Orbit limit current is assumed. The collector is a conductive

sphere or an infinite cylinder. Any distribution which is an arbitrary function of the

velocity vector can be considered as a superposition of many mono-energetic beams

whose current- potential relations are known. The results for two typical pitch an-

gle distributions are derived and discussed in detail. The general properties of the

current potential relations are very similar to that of a Maxwellian plasma except

for an effective temperature which varies with the angle between the magnetic field

and the charging surface. The conclusions are meaningful to generalized geometries.

The Introduction

The current collection from incoming particle is a fundamental problem in charg-

ing theory. In this paper the current collection in anisotropic plasmas is studied.

The analytic expressions for current potential relations which have been used so far

are derived from Maxwellian distribution.

Here the basic current potential relation for Maxwellian plasma are repeated

briefly. These well known results will be compared to that of anisotropic plasma

frequently in rest part of this paper. The orbit limited current to a spherical con-

ductor or cylindrical conductor for repelled particles is ( Mott-Smith and Langmuir

1926; Prokopenko and Laframboise 1977,1980;):

I = Ioe -e (1)

For attractive particle, the charging current is:

I = Io(1 + _) (2)

for a spherical conductor and the following:

i v/-_e e e_t2dt)
I= Io(2/V/_)(_/-_ + 2 (a)

for a cylinder.

Charging currents to satellites in anisotropic plasmas have not been discussed

systematically. The real distributions of the plasmas at synchronous orbit may be

very different from Maxwellian. For example, the pitch angle distributions in the

earth magnetic field are very common. In this paper,the current collection in
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anisotropic plasmas is studied to see how it would be deviate from that in isotropic

plasma.

In order to discuss the variety of distributions, all other conditions are assumed

as simple as possible:

1) The effect of space charge is neglected. Orbit limited current is assumed.

2) The distribution function can be an arbitrary function of the velocity vector but

it does not depend on the spacial location. The currents from two distributions are

derived in this paper:

a.

V._ V 2

3 21 --Ira--L-- ! _r_ "I
Tle _ kril 2 kr±

f(Y) = N(2-_)_ /TII (4)

TII and T± mean the directions related to the magnetic field.
b. A source cone or a loss cone in a Maxwellian distribution function.

3) The probe is a conducting sphere or an infinite cylinder.

4) VXB force is neglected. The role played by the magnetic field is only to indicate

the direction of the anisotropy.

5) Plasma is collisionless.

The above assumptions are reasonable for satellites at the synchronous orbit.

A distribution function of plasma and its current to a charged conductor can

be separated and superposed, the plasma are separated into many monoenergetic

beams whose charging currents are known. The currents to a sphere conductor

lp from such a beam are( Mott-Smith and Langmuir 1926 ):

Ip = Io(1 + e¢/E) = r R2i(1 + e¢/E) (5)

for attracted particle,the following:

Ip = Io(1 - e¢/E) = 7r R_i(1 - e¢/E) (6)

for repelled particle with E > e_b . When E < e¢, Ip -- 0
Here

_=_
kT

The "e'is the magnitude of a electron charge.

e¢ is the potential energy at the surface.

k is the Boltzmann's constant.

T is the temperature of the plasma

I0 is the current to a uncharged probe. I and I0 are define as total current for the

sphere and refer to the current per unit length for the cylinder.

Io = area × _/2-_m
m is the mass of a ion.

E is the kinetic energy of a particle at infinity.

The i is the current density of the beam.

R is the radius of the sphere.

75



The equation (4) and (5) simply comes from the energy conservation and the

angular momentum conservation.

The basic assumption is that particles which carry maximum angular momen-

tum and still reach the sphere are the grazing particle. This may not be true for

attracted particles if the space charge effect is included (Laframboise 1965 Fig 4d).

Therefore the condition for equation (4) and (5) is that current be orbit limited.

Similar relations hold for the cylinder:

I = 1or/1 + e¢/E = 2R + e¢/E

for attracted particle and the following:

I -- Io_1 - e¢/E --=2R i_l - eC/E

(7)

(8)

for repelled particles with E>e¢ when E<e¢, I t,=0

The assumption and derivation of (7) and (8) is the same as equation (5) and (6).

Caution should be observed: If the beam is not perpendicular to the axis of the

cylinder, the i in (7) and (8) is not the current density of the beam but is the

component perpendicular to the axis at infinity. Also the E is not the total kinetic

energy of the particle but the kinetic energy in the direction perpendicular to the

axis. Integrating of these beam with weight of distribution function leads to the

total charging current of incoming plasma. The integral is carried out in the plasma

frame. The superposition method will be illustrated in more detail in next section.

The Result of the Current-potential Relations

It is more convenient to use dimensionless quantities:

I0 : the current to an uncharged conductor

I/Io: Dimensionless charging current

:Nondimensional potential /3 = e¢/kT± or eC/kT

k :the Boltzmann's constant.

T : the temperature of the plasma

The current to a attracting sphere from a two temperature plasma.

The "i" in equation (4) is the current density of the beam at infinity. It is

equal to the density times the velocity. Now the density should be replaced by the

number of particles in a infinitesimal volume in velocity space f(_)da(_) f(_) is

the distribution function (4)

The current to the charged sphere is:

':f f f +(v)V(l++¢/S)d3(+)S (9)
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Here S = lr R 2

d3(_) = V2d¢ sinO dO dV

The angle # and ¢ indicate the directions of particles at infinite. 0 is the polar

angle of the velocity. ¢ is the azimuthal angle of the velocity. All quantities are

defined in the plasma frame. The distribution function ]'(e) , the velocity V, and

the kinetic energy E are the values at infinity(i.e, in the plasma frame). The integral

is carried out in the plasma frame.

I = Net R z { T± dV d¢ sin# d#

e¢ i m v 2( "i"2a4.¢o,2e

Define

B __

2 A
- Ne R2(_)]/T_TI2,_m

1112

sin20 cos20
K(O) = + --

kT, kTl

E = lm V 2

/o® /[I = B dE

2

sinO dOE (e -E gCo) + e¢ e -E K(0))

(lo)

(11)

(12)

Define I0 as the current to an uncharged sphere.

f_T,,
Io = 21r R _ N_l--:2:31-(1 +

V2_r m

1 CD

2X/[ l-el
(13)

Here C = T__
TIt

D = 2 tg-lv_ -- 1 if T. > _ql
D = In l+¢i-:-d_-VT:-d if T_L > Tll

Define the effective Temperature as:

Tf = T± ( _/I CD1- C I + _)1 (14)

The current to a charged sphere becomes

I: I0(1 + e¢/kTf) (15)

The dimensionless current are plotted in Fig. 1 as the function of the dimen-

sionless potential for different values of T±/TII which is the indication of the
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anisotropy. The lower curves correspond to lower TII The curves are simply

straight lines. The different slopes of the curves is calculated by equation (14). The

form of current-potential relation is similar to the one of the Maxwellian plasma

equation (2). The the relation between the current and the potential is linear.

From equation(5), the current potential relation is linear for a beam to a sphere.

Therefore the superposition of the beams is also linear. This is clear according to

equation(13). The change of the charging current is :

fA I = I- Io = e¢ f(g)_,d _

The current to a uncharged probe is:

I0 = / f(V) v d3_

A I/I = e¢
f f(V)Y d3_

If we write
e¢

AI/I=_
The change of the current is proportional to the potential. The quantity T! is

independent of the potential and has the unit of energy. So we have the definition

of TS:
f f(V)V d3V.

T, = f _f(V)vd_
If the distribution function is Maxwellian. T I identifies with the temperature. In

an anisotropic plasma, T! is related to the energy in the direction perpendicular

to the surface. It is a combination of T± and T H . Its values lie between T±

and HI and is more close to 7'1 since T± corresponds to two dimensions

while Ttl only corresponds to one dimension.

The current to a repelling sphere of two temperature plasma

Starting from equation (12). I changed the lower limit of the integral and the

sign before e¢

I = B foo dEE (e -E K(O) _ e¢ e -E K(O))sinO dO

Here B is defined by equation (10)

current is:

2 [ kT± T±

I = 2. R v _'il,/2--_(=)

K(O) is defines by equation (11) The charging

1 g-e ¢ G X 2' dx x2)_e-_-_ (10)_} 1 (1- c kT±
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Here G 1 1 Define _ = e¢/kT±
-- kT.L kTil _

I/Io = e-z C_ /_ e-e _,CX_1 cD x dX x2)2 (17)
1 + __ 1 (1-G kT±

I0 is the current to an uncharged sphere defined by equation (12)

In Fig.2 the dimensionless current I/Io is plotted as the function of dimen-

sionless potential eC/kT± Each figure correspond to a different ratio of Tx/TII

The shapes of the curves are very similar to the exponential form of Maxwellian.

The logarithm scale is used for dimensionless current to show this similarity.

The current collected by a sphere from a plasma with a loss cone

For repelled particles,

e_ d¢ sinO dOI = Near R:(2--jgf)2 x JOu

Oo is the angle of loss cone

= - kT eosO 0I Io.,e _

Here Io,_ is the current to a uncharged sphere in a Maxwellian plasma.

/
Iota = I = 4Ir R2_[

V2r rn

The Current to an uncharged sphere I0 is

For attracted Particles

I = Near R2(2--_)_ fff' dV_

(18)

_x., v2 e___L_ v 3_
er_--- (1 -4- lrnVr2,r ]

fo"_ d¢ ['_-°° sinO dO
,10o

e¢
I: Io_(1 + _-f)eos0o

Io = Io,neosOo

e¢ (19)
I/lo= l + k--T

The I - ¢ relation is exactly the same as Maxwellian plasma. This con-

clusion can be generalized to any pitch angle distribution if the angle dependence

is separated from energy dependence, i.e. f(_) = f(O, ¢) x f(E) This result
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supports the condition that the angle preference of a distribution function does not

change the I- ¢ relation for a spherical conductor if the energy dependence of

the distribution is the same as the Maxwellian distribution.

The current to a cylinder in a two temperature plasma.

Define the coordinates as shown in Fig. 3. The axis of the cylinder is defined

as the Z direction. X axis is in the plane of B field and axis of the cylinder. The

magnetic field is parallel to the plane with azimuthal zero. The polar angle of B

field is 00. The azimuthal angle of the velocity is ¢. The polar angle of the velocity

is 0. I] and 2_ in The Vz is the velocity component in the direction of axis of

the cylinder. V, is the velocity perpendicular to the axis.
m _ 12 21r

I = 2NeR(F_--_)2/TI] T. f_o dV_ dV,. f_ de foo_,0 il -4- _ "-', --__T-_2V_e 2

92 2
_I 1

2/2/_in f_ use V-_- for repelled particles, use 0 for attracted particles.

II = 2NeR /Tll2T_ _,¢os_._ _) V/e¢ -4- Ere-_bXO(b)d E,.
Ttt( ltTll + kT. ] ¢,0

(20)

Here I0 is the zero order first kind of Bessel function E_ = _mV_l2

b= E, sin20o(_l I _.)× (1 + _-----+_-)

_ i 2_¢ /o¢_._/-ue-V{'+H)Io(HU)dU (21)I0 = 2NeR /kT i T± --,_o,_z_2_ _-.¢!__.a'l
HtL kTtt "3u kT_ ]

For H > 0 . Here, U = E_/T. Er is the kinetic energy perpendicular to the

surface of the cylinder.

sin20o(1 - C)
H=I+

(C - 1) cos20o + sin20o

c 7"1
T,

Oo is the angle between the B field and the axis of the cylinder

fz_, ,o _ × e-u(l+lt)IO(Hu) dU
I/IO

.[_o Vr_e__,Cl+H)iO(Hu) dU

(22)

(23)
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Here
e¢

aT±

C-
Tll

in V_ q-/3 use q- for attracted particles, use - for repelled particles

See Fig.4 and Fig.5 In each figure the curves which change slower with potential

correspond to higher 711 . The angle effect is indicated by the H factor in equa-

tion(22). When the B field is parallel to the the axis of the cylinder, H=0 and the

IO(Hu) in equation (23) approaches 1. The I - ¢ relation is reduced to the

form of Maxwellian plasma. In this situation the velocity parallel to the axis will

not be changed by electric field and does not contribute to the charging current at

all. Therefore Tll does not appear in equation (23). While 00 decreases from

900 to 0, the motion parallel to B contributes less and less to the charging. TII

becomes less important.

Current in a Maxwellian plasma within a small source cone

I,_ur,_c/IO-- U e_ KI(U) (24)

It,p,,/10= u e-¢ KI(U) (25)

Here U = e ¢/2T sin20o K1 is the Third kind Bessel function of order one. If 00 is

small current-potential relation behaves like a Maxwellian distribution with a lower

temperature. If plasma come from a direction which is almost perpendicular to the

surface, The curves behave like a Maxwellian plasma with a higher temperature.

See Fig.6 and Fig.7 I/Io is plotted as the function of e¢/kT A curves

of Maxwellian distribution is plotted in each figure to be compared with source

cone. The U factor in equation (25) and (26) shows that 2T sin20o is the effective

temperature. Teffect is less than T when Oo < 45 °. Tel/cot is greater than T

when 00 > 45 °. The temperature of a Maxwellian plasma can be understood as

the average of these Te//_¢t over all direction.

I only calculated the I- ¢ relation for a flow from a small solid angle,but

the behavior of a wider source cone can be estimated from the result of the small

solid angle. If the maximum angle between the axis and a beam within the wide

solid angle is 600 and the minimum angle is 30 ° The I- ¢ curve of such

a source cone should lie between the two curves corresponding to 0 ° = 300 and

00 = 600

The Discussion
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Arbitrary Distribution

There are other distributions such as a double Maxwellian and a monoener-
v

getic beam plus a Maxwellian distribution function, for which charging currents are

very easy to be obtained by using superposition. In general the method in this

paper applies to any homogeneous distribution function. The only problem left is a

mathematical one which refers to integrals of equation (5)-(8) in three dimensional

space of canonical momenta. Sometime integrals have to be carried out numerically.

The similarity to the Maxwellian plasma

The general properties of the current-potential curves of pitch angle distribu-

tions are very similar to that of the Maxwellian plasma The current potential re-

lations of attractive particle for a sphere is exactly linear as shown in Fig.1 . For

repelled particles the relation are almost exponential for both sphere and cylinder

as shown in Fig.2,5 and 7.

The importance of the effective temperature

While the energy of Maxwellian plasma is indicated by the the temperature, the

energy of a pitch angle distribution in the charging problem refers to an effective

energy in the direction perpendicular to the charged surface.

The value of the effective temperature

For a pitch angle distribution defined by equation (1), The value of effective

temperature is an average of T± and Tll . If the surface has no angle preference

(a conducting sphere) Tezf_ct is defined by equation (9). T± contributes more to

the average since T± indicates the kinetic energy in two dimensions while Tii

is only related to the motion in one dimension. When the surface is parallel to the

B field, T_ffe¢t will deviates from the value of equation (9) and move closer to the

T±. When the surface is perpendicular to the B field, Teff_u will approach Tjl

For the charging of a cylinder from a source cone of a Maxwellian plasma the

Teffect equals the temperature of the Maxwellian distribution times an angle fac-

tor. The factor is less than 1 when the source cone makes a small angle with the

surface. When the source cone is perpendicular to the surface, the T_ff_t will be

greater than T. T_ff_¢t can not exceed 2T.

Current to a uncharged surface element

The current to a uncharged surface has not been studied in section 2. All for-
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mula and Figures are shown in terms of dimensionless currents I/Io . There is

not much physics involved in the calculation of Io . It is just the random flux

along the normal direction of the surface. Obviously the current varies with the

angle between the surface and the preferred direction of the anisotropic distribution

disregarding the geometry of the whole satellite. The change of the electron current

and ion current due to I0 will affect the equilibrium potential.

The equilibrium potential varies with the orientation of the surface.

The equilibrium potential varies with the angle between the magnetic field and

the charging surface. The surface which is parallel to a source cone feel that the

plasma has less energy; therefore, it would be charged to a lower equilibrium poten-

tial than the surface perpendicular to the source cone. The equilibrium potential

depends on the effective temperature. The T I of a source cone has a upper limit

which is about 2T.

The Conclusion

In case of (4) and source cone, the properties of current-potential relation of a

conductor in a anisotropic plasma are qualitatively similar to that in Maxwellian

since the energy distribution is similar. The difference caused by anisotropy is that

a surface tangential to the preferring direction of anisotropy starts charging with

a less charging current and reaches a lower equilibrium potential than a surface

perpendicular to the preferred direction.
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Fig. 2 The current to a sphere from repelled particles of a two temperature

plasma.
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Fig. 6 Current to a cylinder from attracted particles of a Maxwellian/)lasma
within a small source cone
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Fig. 7 Current to a cylinder from repelled particles of a Maxwellian plasma

within a small source cone
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